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Temperature Measurements of Shock-Compressed Deuterium

N. C. Holmes, M. Ross, and W.J. Nellis

Abstract

We measured the temperatures of single- and double-shocked D 2 and H 2 up to 85 GPa
(0.85 Mbar) and 5200 K.  While single shock temperatures, at pressures to 23 GPa, agree
well with previous models, the double shock temperatures are as much as 40% lower
than predicted. This is believed to be caused by molecular dissociation, and a new model
of the hydrogen EOS at extreme conditions has been developed which correctly pre-
dicts our observations. These data and model have important implications for programs
which use condensed-phase hydrogen in implosion systems.

Temperature measurements of shock compressed materials provide a very sensitive con-

straint to theoretical models of the equation of state.  This is particulary true for those materi-

als in which shock energy can be absorbed in internal degrees of freedom. In the case of liquid

nitrogen, shock temperature measurments showed that dissociation resulted in the phenom-

enon of “shock cooling.” [1]  In a series of recent experiments, we measured the temperatures

of shock-compressed D2 and H 2, and the results have led to a revision in models of hydrogen at

Fig. 1. Comparison of previous theoretical model for D
2
 by

Ross, Ree, and Young [5], denoted by RRY, with the present
model. Circles refer to single shock states, squares to double
shocks. The sets of open circles and open squares are for pairs
of single and double shock measurements.
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high pressure and temperature.

We performed single and double-shock

experiments, in which we measured the

temperature during the passage of a strong

shock in the fluid, and after reflection of

the shock off a transparent window. Most

of the measurements were in (initially liq-

uid) D 2, since its use allows higher pres-

sures and temperatures to be obtained

than with H 2. Details of the experimental

setup can be found in Refs. 2 (D 2 EOS and

cryogenic methods) and 3 (optical pyrom-

eter), and the details of this work, its analy-

sis, and the new theoretical model are

found in Ref. 4.

The large two-stage light-gas gun in B.

341 was used to generate the shock waves,

using projectile velocities up to 7.2 km/s.

The hydrogen samples were condensed



from research-grade gas into a sample cavity 1.5 mm thick surrounded by liquid H 2 at 20 K.[2]

The experiments were planar and one-dimensional in the observation region. We observed the

shock temperatures using a fiber-optic-coupled optical pyrometer with an effective sensitivity

of f/2.5 and 1 ns time resolution.[3] The sample cavity was bounded on the impact side by an

Al plate, on the other by transparent Al 2O3 or LiF windows. These windows remain transparent

under the conditions of shock loading in our experiments. The results of our experiments on

D2 are plotted in in Fig. 1.

The new model developed by Ross,[4] indicated in the figure as the “present model,” as-

sumes that the properties of the shocked fluid can be accurately expressed as a mixture of pure

phases: molecular and monatomic hydrogen. This model leads to a thermodynamically self-

consistent effective density- and temperature-dependent dissociation energy for calculating

the fraction of dissociated molecules. Since the value of this dissociation energy decreases as

the the hydrogen is compressed, we predict that hydrogen undergoes a continuous dissociative

phase transition in the region of our experiments.  The agreement between calculated and

measured temperatures, shown in Fig. 1, is remarkably good. This provides us with confidence

in the predictive ability of our model.  In Figure 2, we compare the principal Hugoniot calcu-

lated with the present model (solid line), the old (RRY) model,[5] and to various tabular

Fig. 2. A calculation of the temperature along the principal Hugoniot of liquid D
2 
as a function

of pressure with the present model (solid curve), with the old model (dashed curve), and tabular
equations of state . Representative densities along each locus of states are indicated by open
circles and squares for the present and old models, respectively.
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equations-of-state now in use. The tabular data is essentially the same as the old model. On the

Hugoniot, we can expect more compression and lower temperatures than previously believed.

This is good news!

It is clear from Figure 2 that these calculations are a significant extrapolation beyond our

current data set. Higher initial pressures are possible using our gun, up to nearly 30 GPa single

shock, 140 GPa in double shocks. We plan to perform experiments to measure the single- and

double-shock EOS, and then the shock temperatures at this pressure in the future, to further

test and refine the present model.
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